HMS and HMG High Mounting Series Unit Heaters TECHNICAL GUIDE

STEAM, HOT WATER AND GAS HEATERS TO PROVIDE A COMFORTABLE ENVIRONMENT IN HIGH BAY AREAS

Since 1875, the L.J. Wing Company has been a leader in providing innovative solutions for difficult HVAC problems. Wing HMS and HMG Series heaters provide reliable air heating with steam, hot water or gas for tall open spaces such as aircraft hangars. This technical guide will help you size, select and specify the proper HMS or HMG model to satisfy your project's heating requirements. If you have questions, please contact your local L.J. Wing representative; he will be glad to assist you.

4830 Transport Drive, Dallas, TX 75247 Tel. (214) 638-6010 www.ljwing.com

In the interest of product improvement, L.J. Wing reserves the right to make changes without notice.

TABLE OF CONTENTS

<i>Dperation</i>	!
Notor and Sound Data	!
Nodel Number Description	!
Selection and Performance	,
Dimensions	1
Piping	
Electrical	!
Specification and Schedule – HMG15	i
Specification and Schedule – HMS16	î

PRODUCT DESCRIPTION

Product Offering

L.J. Wing High Mounting Series unit heaters are specifically designed for heating aircraft hangars and other open spaces with very tall ceilings. Two different models are available:

Type HMS - Designed for use with steam or hot water heat sources;

Type HMG - Indirect natural gas-fired heating.

Four models of both HMS and HMG units are offered as shown below.

Two styles of L.J. Wing's unique revolving discharge are available with either HMS or HMG units to deliver the air down to the comfort level, five to six feet above the floor. A high-torque motor coupled with an idler gear drive rotates the discharge at approximately one rpm. This creates a gentle sweeping motion of air that results in better overall coverage with minimal temperature gradients from floor to ceiling.

HMS	AIRFLOW		WEIGHT
SIZE	(SCFM)	MOTOR HP	(LBS)
10	24,000	10	3,150
15	26,700	15	3,300
20	29,300	15	3,500
30	30,800	20	3,650
HMG			
5	23,700	2@5	5,750
7	26,000	2@5	5,950
10	28,000	2@71/2	6,200
15	29,800	2@71/2	6,450

Airflow and Motor Data

ETL Coil Operating Parameters:

Maximum elevation is 9,000 ft. (2,743.2m). Maximum operating temperature is 250°F (121.1°C). Minimum operating temperature is 0°F (-17.8°C). Maximum operating pressure is 100 PSIG (689 kPa). Minimum operating pressure is 2 PSIG (13.8 kPa).

Model Number Description

SELECTION

General Guidelines

The first step in selecting the proper heater is a calculation of the building heat loss.

Next, select the quantity of HMS or HMG units to offset the calculated building heat loss. With the large heating capacities available with the HMS and HMG units, relatively few heaters are required even for large areas. This reduces the cost of installation, piping, wiring and controls with ongoing savings in operational and maintenance costs.

Finally, select the type of discharge with the lowest maximum mounting height that yields the required coverage.

Please consult your Wing representative for equipment selection at conditions outside the ranges described herein.

Unit Selection Procedure and Performance – HMS Steam

- 1. Select HMS units to meet the space heating requirements from the HMS Steam Performance table at the given space temperature.
- Select the discharge capable of providing the necessary coverage, CV, at the required mounting height, MH.
- Calculate the Air Temperature Rise, ATR, across the HMG unit: ATR = (Q x 1,000)/(1.085 x CFM) where CFM is from Airflow, Motor and Sound table on page 4.
- 4. Calculate the Leaving Air Temperature, LAT: LAT = EAT + ATR
- Calculate the condensate load, CL: CL = Q/LH where LH = 945 Btu/lbm

Example: Select HMS unit(s) to heat a space 420 feet long by 290 feet wide at a mounting height of 75 feet. Building heat loss is 9,300 MBtuh at a space temperature of 60° F.

Solution:

- 1. It will take six of any size HMS unit to meet the heating requirements with each HMS unit supplying at least Q = 9,300/6 = 1,550 Mbtuh. It can be seen that the smallest size HMS unit that can provide sufficient heat is size HMS-20: $6 \times 1,574 = 9,444$ Mbtuh.
- The required coverage is: 420/3 = 140 feet x 290/2 = 145 feet at a mounting height of 75 feet. Select a 10R discharge with MH = 78 feet with CV = 167 feet x 167 feet.
- 3. ATR = (1,574 x 1,000)/(1.085 x 29,300) ATR = 49.5° F.
- 4. LAT = 60 + 49.5 = 109.5° F.
- 5. CL = (1,574 x 1,000)/ 945 = 1, 665.6 lbm/hr.

	60° F space temperature						70° F space temperature					
		8R Discharge		10R Discharge		10R Discharge			8R Di	scharge	10R D	ischarge
	Q	МН	CV	MH	CV	Q	МН	CV	МН	CV		
SIZE	(Mbtuh)	(feet)	(feet)	(feet)	(feet)	(Mbtuh)	(feet)	(feet)	(feet)	(feet)		
10	1,391	54	125x125	62	144x144	1,307	57	132x132	66	152x152		
15	1,486	61	136x136	71	156x156	1,397	64	143x143	75	164x164		
20	1,574	68	147x147	78	167x167	1,480	72	154x154	83	176x176		
30	1,624	72	153x153	82	174x174	1,527	76	161x161	87	183x183		

HMS - Steam Performance

Notes:

1. Performance shown is based on 5 psig steam pressure at the coil.

- 2. For higher steam pressures, the surface area will be reduced to produce the same performance.
- 3. Q = Heating Capacity; MH = Maximum Mounting Height; CV = Heating Coverage

Unit Selection Procedure and Performance – HMS Hot Water

- Select HMS units to meet the space heating requirements from the HMS – Hot Water Performance table at the given space temperature.
- 2. Select the discharge capable of providing the necessary coverage, CV, at the required mounting height, MH.
- Calculate the Air Temperature Rise, ATR, across the HMS unit: ATR = (Q x 1,000)/(1.085 x CFM)
- 4. Calculate the Leaving Air Temperature, LAT: LAT = EAT + ATR
- 5. Look up the required water flow rate, GPM, and Water Pressure drop, WPD, from the HMS Hot Water Performance table

Example: Select HMS unit(s) to heat a space 282 feet long by 282 feet wide at a mounting height of 65 feet using 200° F hot water with a 20° F water temperature drop. Building heat loss is 5,150 MBtuh at a space temperature of 70° F.

Solution:

- 1. It will take four of any size HMS unit to meet the heating requirements with each HMS unit supplying at least Q = 5,160/4 = 1,290 Mbtuh. It can be seen that the smallest size HMS unit that can provide sufficient heat is size HMS-15: 4 x 1,338 = 5,352 Mbtuh.
- The required coverage is: 282/2 = 141 feet by 282/2 = 141 feet. Select an 8R discharge with MH = 67 feet and CV = 148 feet x 148 feet.
- 3. ATR = (1,338 x 1,000)/(1.085 x 26,700) ATR = 46.2° F.
- 4. LAT = 60 + 46.2 = 106.7° F.
- 5. GPM = 141.9; WPD = 7.0 feet H₂O

	60° F space temperature						70° F space temperature					
		8R Discharge		10R Discharge		e 10R Disch			8R Di	scharge	10R D	ischarge
	Q	МН	CV	МН	CV	Q	МН	cv	МН	CV		
SIZE	(Mbtuh)	(feet)	(feet)	(feet)	(feet)	(Mbtuh)	(feet)	(feet)	(feet)	(feet)		
10	1,364	55	127x127	63	146x146	1,255	59	137x137	68	158x158		
15	1,449	62	139x139	72	159x159	1,338	67	148x148	78	171x171		
20	1,534	69	150x150	80	171x171	1,410	74	160x160	86	184x184		
30	1,581	74	156x156	84	178x178	1,453	78	167x167	90	191x191		

HMS - Hot Water Performance

	60° F spa	ace temp.	70° F spac	e temp.	
	GPM	WPD	GPM	WPD	
SIZE	(gpm)	(feet H₂O)	(gpm)	(feet H₂O)	
10	145.5	7.3	133.9	6.2	
15	149.0	7.6	141.9	7.0	
20	158.0	8.5	145.0	7.3	
30	163.0	8.2	150.0	7.7	

Notes:

- 1. Performance shown is based on 200° F entering water temperature and a 20° F water temperature drop through the coil. Consult factory for performance at other conditions.
- 2. Q = Heating Capacity; MH = Maximum Mounting Height; CV = Heating Coverage.

Unit Selection Procedure and Performance – HMG

- 1. Select HMG units to meet the space heating requirements from HMG Performance table at the given space temperature.
- 2. Select the discharge capable of providing the necessary coverage, CV, at the required mounting height, MH.
- 3. Calculate the Air Temperature Rise, ATR, across the HMG unit:
 - $ATR = (Q \times 1,000)/(1.085 \times CFM)$
- 4. Calculate the Leaving Air Temperature, LAT: LAT = EAT + ATR

Example: Select HMG unit(s) to heat a space 200 feet long by 200 feet wide at a mounting height of 96 feet. Building heat loss is 1,265 MBtuh at a space temperature of 60° F.

Solution:

 It will take only one of any size HMG unit to meet the heating requirements: Q = 1,280 Mbtuh.

The required coverage is 200 feet by 200 feet.

- Select a HMG-15 unit with a 10R discharge to yield MH = 100 feet and CV = 211 feet x 211 feet.
- 3. ATR = (1,280 x 1,000)/(1.085 x 29,800) ATR = 39.6° F.
- 4. LAT = 60 + 39.6 = 99.6° F.

HMG Performance

	60° F space temperature						70° F space temperature				
		8R D	Discharge 10		10R Discharge		8R Di	scharge	10R D	ischarge	
	Q	МН	CV	МН	CV	Q	МН	CV	MH	CV	
SIZE	(Mbtuh)	(feet)	(feet)	(feet)	(feet)	(Mbtuh)	(feet)	(feet)	(feet)	(feet)	
5	1,280	58	135x135	67	155x155	1,280	58	135x135	67	155x155	
7	1,280	69	154x154	81	177x177	1,280	69	153x153	81	177x177	
10	1,280	80	172x172	93	199x199	1,280	80	172x172	93	198x198	
15	1,280	86	183x183	100	211x211	1,280	86	182x182	100	210x210	

Note:

1. Q = Heating Capacity; MH = Maximum Mounting Height; CV = Heating Coverage.

DIMENSIONS

HMS Unit Dimensions

INLET CONNECTION FOR STEAM AND

OUTLET CONNECTION FOR HOT WATER

OUTLET CONNECTION FOR STEAM AND

INLET CONNECTION FOR HOT WATER

1. COIL CONNECTION - 2" NPT TYPICAL

2. COIL CONNECTION - 2" NPT TYPICAL

3. ELECTRICAL ENCLOSURE

5. OSHA BELT GUARD

7. HEATING COIL

4. ADJUSTABLE MOTOR BASE

HMS UNIT WITH STEAM OR HOT WATER COILS

6. EQUIPMENT SUPPORT (BY OTHERS)

- - 8. LIFTING LUGS 9. SUPPORT CHANNEL
 - 10. OPTIONAL ISOLATORS (SHIPPED LOOSE)
 - 11. ACCESS DOOR
 - 12. V-BANK FILTER SECTION
 - **13. INLET OPENING WITH BIRDSCREEN**

SIDE ELEVATION

FRONT ELEVATION

HMS UNIT WITH STEAM OR HOT WATER COILS AND OPTIONAL FILTER SECTION

DIMENSIONS

HMG Unit Dimensions

C000590

COMPONENT IDENTIFICATION

- 1. FURNACE FLUE 5" DIAMETER 2. GAS INLET CONNECTION (OPTIONAL)
- 3. DISCONNECT SWITCH (OPTIONAL)
- 4. EXTENDED BEARING LUBE LINES 5. MOTOR WITH ADJUSTABLE BASE 6. DUCT FURNACE INLET
- 7. ACCESS DOORS (BOTH ENDS)
- 8. DIMENSIONS FOR SUPPORTING UNIT 9. LIFTING LUGS
- **HMG UNIT WITH GAS FURNACES**

DIMENSIONS

Discharges

C000591

HMS AND HMG DISCHARGES

STYLE 8R DISCHARGE

STYLE 10R DISCHARGE

Steam and Hot Water Piping Diagram

C000697

HMS UNIT HEATER STEAM AND HOT WATER PIPING DIAGRAM

STEAM PIPING LEGEND (FOR GRAVITY ATMOSPHERIC RETURN SYSTEMS)

- 1. GLOBE OR GATE VALVE
- 2. OPTIONAL MOTORIZED SHUT-OFF VALVE
- 3. BY-PASS TO ALLOW SERVICING OF MOTORIZED VALVE. BYPASS LINE TO BE THE SAME SIZE AS MOTORIZED VALVE.
- 4. INVERTED BUCKET OR COMBINATION FLOAT AND THERMOSTATIC TRAP WITH VENT.
- 5. BY-PASS TO PERMIT SERVICING OF TRAP. BY-PASS TO BE ONE PIPE SIZE LARGER THAN TRAP ORIFICE.
- 6. DIRT POCKET AND DRIP LEG. TO BE THE SAME SIZE AS THE HEATER CONDENSATE RETURN LINE.

- 7. STEAM SUPPLY MAIN.
- 8. CONDENSATE RETURN MAIN.
- 9. 15° SWING CHECK VALVE.
- 10. 1/2" SPRING LOADED VACUUM BREAKER VENTED TO ATMOSPHERE.
- 11. STEAM STRAINER WITH BLOW-DOWN VALVE.
- 12. 1/2" DRAIN VALVE. TO BE OPENED WHEN GLOBE

OR GATE SHUTOFF VALVE IS CLOSED.

HOT WATER PIPING LEGEND

1. GLOBE OR GATE VALVE 2. AUTOMATIC AIR VENT 3. COIL DRAIN VALVE 4. WATER FLOW CONTROL VALVE 5. HOT WATER SUPPLY LINE 6. HOT WATER RETURN LINE

ELECTRICAL

Wiring Diagram – HMS – Typical 3-Phase

C000698

	NOTES
NOTE:	BECAUSE OF SHIPPING RESTRICTIONS
FIELD	CONNECTIONS AND/OR WIRING BETWEEN
сомра	DNENTS OR SECTIONS MAY BE REQUIRED
\frown	DENOTES COMPONENT TERMINAL

()	DENOTED COM ONEIT TERMINAE
\bigcirc	NUMBER AND WIRING
	DENOTES JUMPER WIRE
•	DENOTES WIRE CONNECTION
	DENOTES CONTROL CABINET
	TERMINAL BLOCK AND WIRE NUMBER
Λ	DENOTES COMPONENTS SUPPLIED
\bigtriangleup	AND WIRED BY OTHERS

— — DENOTES FIELD WIRING BY OTHERS

OPTIONAL COMPONENT IDENTIFICATION

∆ FU-09	CONTROL CIRCUIT FUSE
△ FU-11	MAIN DISCONNECT FUSE
\triangle OL	MOTOR OVERLOAD
MT-01	MAIN SUPPLY FAN MOTOR
△ MT-37	REVOLVING DISCHARGE MOTOR
∆ ST-01	MAIN SUPPLY FAN MOTOR STARTER
∆ SW-01	MAIN DISCONNECT SWITCH
∆ SW-14	SUMMER-OFF-WINTER SWITCH (REMOTE)
∆ SV-01	STEAM SOLENOID VALVE
∆ TC-01	ROOM THERMOSTAT

△ TR-01 CONTROL TRANSFORMER

ELECTRICAL

Wiring Diagram – HMG – Typical 3-Phase

TYPICAL WIRING DIAGRAM FOR MODEL HMG-5, HMG-7, HMG-10 AND HMG-15 C000699

CAUTION: OPEN MAIN DISCONNECT SWITCH BEFORE SERVICING EQIPMENT

UNIT SHALL BE GROUNDED ACCORDING TO THE LATEST PROVISIONS OF THE NEC

	- COMPONENT IDENTIFICATION	
_1	DUCT EURNACE DRAFTOR RELAY	

	FL-01	SUPPLY FAN SWITCH
Δ	FU-09	CONTROL TRANSFORMER FUSE
Δ	FU-11	MAIN DISCONNECT FUSE
	HT	FURNACE HIGH TEMPERATURE LIMIT
	MT-01	SUPPLY FAN MOTOR #1
	MT-02	SUPPLY FAN MOTOR #2
Δ	MT-37	REVOLVING DISCHARGE MOTOR
	MT-38	DUCT FURNACE DRAFTOR MOTOR
	MV	DUCT FURNACE MAIN GAS VALVE
Δ	OL1	MOTOR #1 OVERLOAD
Δ	OL2	MOTOR #2 OVERLOAD
	PS	DUCT FURNACE DRAFTOR MOTOR
		PROOF OF AIRFLOW SWITCH
	PS10	SUPPLY AIR FAN PROOF OF AIRFLOW SWITCH
	PV	DUCT FURNACE PILOT VALVE
Δ	ST-01	SUPPLY FAN MOTOR #1 STARTER
Δ	ST-02	SUPPLY FAN MOTOR #2 STARTER
Δ	SW-01	MAIN DISCONNECT SWITCH
$\overline{\Delta}$	SW-14	SUMMER-OFF-WINTER SWITCH (REMOTE)
$\overline{\Delta}$	TC-01	ROOM THERMOSTAT
Δ	TC-03	TRUSS THERMOSTAT
	TR	DUCT FURNACE TRANSFORMER - 115V/24V
Δ	TR-01	CONTROL TRANSFORMER

ELECTRICAL

Amp Draw Table

				мото	R HORSEP	RHORSEPOWER			
ITEM	SOURCE	AMPS	5	7 1/2	10	15	20		
		AMPS for 208V 3 Ph	16.7	24.2	30.8	46.2	59.4		
•	Blower	AMPS for 230V 3 Ph	15.2	22.0	28.0	42.0	54.0		
A	Motor	AMPS for 460V 3 Ph	7.6	11.0	14.0	21.0	27.0		
		AMPS for 575V 3 Ph	6.1	9.0	11.0	17.0	22.0		
		AMPS		L CIRCUIT IPS					
в	Control	AMPS for 208V 3 Ph	2	2.4					
	Transformer	AMPS for 230V 3 Ph	2	2.2					
		AMPS for 460V 3 Ph	1	1.1					
		AMPS for 575V 3 Ph	0.9						

NOTES:

- 1. Above motor amps are based on the latest edition of the National Electrical Code.
- 2. Control circuit amps are based on standard controls.

Procedure for sizing optional disconnect switch:

- 1. Find the required blower motor HP from Airflow, Motor and Sound Data table on page 4.
- 2. Find amp draw for required blower motor HP and electrical service from above chart in Item A.
- 3. Find amps for control circuit from above chart in Item B.
- 4. Add amps from step 2 and step 3, then multiply by 1.25.

Truss Thermostats (HMG only)

Truss thermostats can be used to control the discharge air temperature of HMG Series unit heaters by turning "on" or "off" individual furnaces based on inlet air temperature. To accomplish this, a truss thermostat is mounted and wired on the inlet duct. It has a bulb-type sensor that is fixed to the outside of the unit.

In this manner, high temperature air that is stratified in the truss can be redistributed to the working levels when the need for it exists – without operating the burners. Process heat that would normally be wasted can be economically put to use.

Also, discharge temperatures can be effectively managed to assure optimum projection. Elevated truss temperatures will increase discharge temperatures. Extremely high temperature air is light in weight and therefore difficult to project from high mounting heights. Here is a typical four truss thermostat set up:

DISCHARGE AIR TEMP. 122° F.

With the room thermostat calling for heat, a typical four burner unit operates as follows:

Ent. Air Temp.	Disc. Air Temp.	Burners on		
70°F	122°F	4 (all)		
83°F	122°F	3		
96°F	122°F	2		
109°F	122°F	1		
122°F	122°F	0 (none)		

Note: Temperature rise through the unit is 52°F.

Typical Specification – HMG

General

Furnish a factory-assembled HMG model High Mounting Series heater as manufactured by L.J. Wing, Dallas, TX, to heat air in a high ceiling application. Heating medium shall be gas. Performance shall be as shown in the schedule.

Heater Section

Unit shall include four (4) (natural gas)(propane) indirect –fired furnaces. Each furnace shall be complete with power vent system, sealed flue collector, electronic flame supervision, and energysaving electric ignition system. Each furnace shall display the AGA/CGA seal of design compliance and be factory tested to assure field operation.

The casing of each furnace shall be made of dieformed, heavy-gauge steel, phosphatized to inhibit rust and corrosion. Each furnace shall have a dieformed (aluminized steel) (Series 409 stainless steel) heat exchanger, and its own gas control piping train, arranged to facilitate field piping to a common supply manifold. The safety controls shall include a combustion air pressure switch to verify proper powered vent flow before allowing the gas valve to open.

Finish

Unit casing and discharge shall be fabricated of heavy-gauge, galvannealed sheet steel. Both casing and discharge shall be painted inside and out with an air-dried alkyd enamel finish.

Blower Assembly

The blower section shall include two centrifugal, heavy-duty, double-width, double-inlet blowers. Each blower shall be complete with motor and drive. Blower ratings shall be based on tests made in accordance with AMCA Standard 211, and shall bear the AMCA seal. All air ratings are based on delivery against the external static pressure shown in the schedule with all optional equipment in place and operating.

Blower wheels shall have tapered spun wheel cones or shrouds to provide stable airflow and high rigidity. The fan wheels shall be non-overloading with backward inclined blades of single thickness, welded to the rim and back plate. Riveted construction is unacceptable. Blowers shall be dynamically balanced at operating speed on precision, electronic vibration-amplifying equipment to ensure quiet, smooth-running, trouble-free operation.

Discharge

Unit shall be furnished with a revolving discharge as listed on the schedule to assure proper air projection and distribution. The revolving discharge shall consist of a slowly rotating air distributor, properly balanced and suspended from the heater casing on two prelubricated, sealed, ball bearings. A small, high-torque motor shall rotate the discharge by means of an idler gear drive that ensures positive traction and final rotation at approximately one RPM.

All discharge outlets shall be fitted with adjustable deflectors to facilitate field adjustment of the discharge air pattern.

Options

(A) Furnish magnetic motor starter with overload block that is factory-wired and mounted in a NEMA 1 electrical control box.

(B) Furnish fused disconnect switch that is factorywired and mounted in a NEMA 1 electrical control box.

Typical Schedule – HMG

		Ent. Air	Leav. Air	Heat	Motor	
Model	Airflow	Temp.	Temp.	Transfer	Horsepower	Electrical Service
No.	(SCFM)	(° F)	(° F)	(MBtuh)	(HP)	(volts/phase/Hz)
HMG-15-8R	29,800	60	100	1,280	2 @ 7.5	460/3/60

Typical Specification – HMS

General

Furnish a factory-assembled HMS model High Mounting Series heater as manufactured by L.J. Wing, Dallas, TX, to heat air in a high ceiling application. Heating medium shall be steam or hot water. Performance shall be as shown in the schedule.

Coils

Coils shall be fabricated of seamless return bend type 5/8" O.D. copper tubes with corrugated plate aluminum fins of not less than 0.006 inches thickness. Coils shall be tested and rated in accordance with ARI Standard 410. The coil casing shall be constructed of galvanized sheet metal, minimum 16 gauge.

Finish

Unit casing and discharge shall be fabricated of heavy-gauge, galvannealed sheet steel. Both casing and discharge shall be painted inside and out with an air-dried alkyd enamel finish.

Blower Assembly

The blower section shall include two centrifugal, heavy-duty, double-width, double-inlet blowers. Each blower shall be complete with motor and drive. Blower ratings shall be based on tests made in accordance with AMCA Standard 211, and shall bear the AMCA seal. All air ratings are based on delivery against the external static pressure shown in the schedule with all optional equipment in place and operating. Blower wheels shall have tapered spun wheel cones or shrouds to provide stable airflow and high rigidity. The fan wheels shall be non-overloading with backward inclined blades of single thickness, welded to the rim and back plate. Riveted construction is unacceptable. Blowers shall be dynamically balanced at operating speed on precision, electronic vibration-amplifying equipment to ensure quiet, smooth-running, trouble-free operation.

Discharge

Unit shall be furnished with a revolving discharge as listed on the schedule to assure proper air projection and distribution. The revolving discharge shall consist of a slowly rotating air distributor, properly balanced and suspended from the heater casing on two prelubricated, sealed, ball bearings. A small, high-torque motor shall rotate the discharge by means of an idler gear drive that ensures positive traction and final rotation at approximately one RPM.

All discharge outlets shall be fitted with adjustable deflectors to facilitate field adjustment of the discharge air pattern.

Options

(A) Furnish magnetic motor starter with overload block that is factory-wired and mounted in a NEMA 1 electrical control box.

(B) Furnish fused disconnect switch that is factorywired and mounted in a NEMA 1 electrical control box.

Typical Schedule

		Ent. Air	Leav. Air	Steam	Heat	Condensate	Motor	Electrical
Model	Airflow	Temp.	Temp.	Pressure	Transfer	load	Horsepower	Service
No.	(SCFM)	(° F)	(° F)	(psig)	(MBtuh)	(lbm/hr)	(HP)	(volt/ph./Hz)
HMS-20-10R	29,300	60	110	5	1,574	1,666	15	230/3/60